
Decentralized Spatial Computing with NetLogo Agent-Based Simulation 18/09/12

Matt Duckham Sheet #3: Simulating with NetLogo

 In a nutshell: NetLogo is an agent-based simulation system. Decentralized
algorithm specifications can be relatively directly translated into NetLogo.
Simulations can help designers to understand the global, emergent behavior in the
protocol, as well as to empirically test the limitations of scalability and robustness.

Understand: NetLogo is a
popular free and open source
agent-based simulation system.
It enables rapid simulation of
both decentralized algorithms
and geographic environments.
NetLogo documentation is
online,
http://ccl.northwestern.edu/netlogo.
A small library of new
NetLogo keywords and
functions has been developed
to help with implementing
decentralized algorithms. This
library includes become
(change state), broadcast
(message to all neighbors),
send (message to specific
neighbor), and routines for
network initialization, message
receipt, and scalability testing.

Netlogo also includes the
BehaviorSpace tool for
automating the running of experiments on protocols. Typical scalability tests
investigate the number of messages generated by the algorithm as the network size
increases (e.g., 125, 250, 500, 1000, 2000, 4000, … nodes). The overall scalability is
important, but so is the individual scalability for nodes (termed load balance). In
addition to scalability, experiments typically also investigate correctness, especially
for approximate algorithms; robustness to sensor errors and faults. Faults are usually
classified into two types: stop faults (node or link stops functioning) and Byzantine
faults (arbitrary failures, like message corruption or state changes).

Discuss:
• Compare the Gossiping simulation model (above) with the specification in

sheet #2. What are the differences?
• Run some simulations of the Greedy Georouting protocol. Can you generate

examples of the limitations identified in sheet #2?
• Experiment with the Greedy Georouting protocol. Can you determine its

average case scalability?
• Investigate the operation and scalability of other protocols, such as

establishing a shortest-path rooted tree (4.8), hop-count sweep (7.1),
topological relations between two regions (4.15).

• Investigate the robustness of these protocols, designing and simulating some
stop and Byzantine faults.

See: Chapter 7 in Duckham (2012) Decentralized Spatial Computing, Springer, Berlin.

214 Decentralized spatial computing

Listing 7.1. Anatomy of protocol simulation in NetLogo (Protocol 4.5)

; ; Run the algorithm .
to go
ask motes [step]
tick

end

; ; Step through the current s tate .
to step

i f state = " INIT " [step_INIT stop]
i f state = "IDLE" [step_IDLE stop]
i f state = "DONE" [step_DONE stop]

end

; ; Broadcast a message to neighbors .
to step_INIT
broadcast ["MSGE"]
become "DONE"

end

; ; When a mote rece ives a message i t may rebroadcast the message
; ; to i t s neighbors based on the probabi l i ty of the g value .
to step_IDLE

i f has−message "MSGE" [; ; When the mote rece ives a message
let msg received "MSGE" ; ; Process the MSGE message
let r random−float 1 ; ; Generate random float [0 . 0 , 1 . 0]
i f r < g [
broadcast ["MSGE"] ; ; Rebroadcast MSGE with probabi l i ty g

]
become "DONE"

]
end

; ; The DONE state does not respond to messages .
to step_DONE

set color 0 ; ; Nodes in the DONE state are black
end

• The step_IDLE procedure de4nes one action, responding to a received
MSGE message. The 4rst two lines of the procedure check for this event,
using the procedures has-message and received developed specially for
this purpose (and not standard procedures of NetLogo). The remaining
lines again correspond very closely to the action for the Receiving event
in Protocol 4.5.

